
11th Asia-Pacific Regional Conference of the ISTVS

September 26-28, 2022 | Hosted by Harbin Institute of Technology, China

Paper 2539 | page 1

Model Predictive Control of a Driving

Robot for Testing of Advanced Driver

Assist Systems

Mike Huanga*
mhuang@srisensor.com

Qiu Haixuanb
qiuhaixuan@saicmotor.com

Yang Chunyub
yangchunyu@saicmotor.com

Xia Lianb
xialian@saicmotor.com

Lin Zhaominb
linzhaomin@saicmotor.com

Wang Yanqingb
wangyanqing@saicmotor.com

Xu Zongqingb
xuzongqing@saicmotor.com

Mingfu Tangc
mftang@srisensor.com

aSunrise Instruments USA, Canton, Michigan, USA
bSAIC Motor R&D Innovation Headquarters, Shanghai, China
cSunrise Instruments, Nanning, China

*Corresponding author

Abstract

Advanced Driver Assist Systems (ADAS) are becoming

more prevalent and more sophisticated in passenger

vehicles, with features such as automatic lane keeping,

pedestrian detection, and emergency breaking. In line with

the increased production deployment of ADAS, testing of

these systems are becoming more rigorous with more

scenarios needing to be considered every year, see, for

example, the ADAS testing conducted by Euro NCAP. To

fit the need of placing test vehicles and environment

factors in very specific and repeatable scenarios, physical

driving robots are commonly used. While most current

tests set up the test vehicle in near steady state conditions,

e.g., constant speed and straight, in the future, more

complex, possibly dynamic scenarios will need to be

tested. This paper presents a Model Predictive Control

(MPC) strategy for controlling a vehicle along dynamic

paths and is easily deployable across different vehicles.

Experiment results demonstrating the controller capability

for both an electric and a conventional vehicle is

presented.

Keywords: Model Predictive Control, Optimal Control,

Robot Driver, Advanced Driver Assist Systems.

1. Introduction

In the following, a Model Predictive Control (MPC) for

a driving robot will be developed for the purpose of testing

ADAS systems. The robot consists of motors and linkages

for pressing the test vehicle’s pedal and brake and for

steering and will drive the vehicle at specific speeds along

specific paths, e.g., as defined by Euro NCAP test

scenarios (Euro NCAP, 2020). Tight tracking of the test

plan, as defined by target positions and speeds or target

positions in time, is pertinent to successful and repeatable

tests, particularly since the tests often involve

coordinating multiple objects in addition to test vehicle,

e.g., leading and following vehicles, cross traffic, and

pedestrians.

MPC is a control methodology which uses a plant model

to predict states and outputs into the future as a function

of a sequence of future controls and current state. This

sequence of future controls is then optimized with respect

to a cost function, e.g., predicted tracking error, and

constraints. Then the first element of the sequence is

applied to the plant. The next sampling instant, the

optimization problem is updated with the new state

measurements / estimates and new targets, the future

control sequence is re-optimized, and the first element of

the control sequence is again applied to plant.

In the context of control of vehicle dynamics, most work

tend to focus on lateral control and tire modelling. Rarely

is lateral and longitudinal control considered together,

possibly because tight speed tracking may be considered

well handled by inner loop controllers. For example, Sun

et al. (2019) and Wang et al. (2019) use bicycle and tire

models for prediction but only optimize for a steering

command while assuming speed is constant over the

horizon. Tang et al. (2020) uses a bicycle and tire model

for prediction and optimizes for a yaw rate target which is

sent to a lower level PID controller for steering. In

dynamic scenarios, e.g., accelerating while turning, these

decoupled strategies will be suboptimal because yaw rate

is fundamentally a nonlinear function of both the steering

angle and vehicle speed.

For multi-variable control, Alcalá et al. (2019) uses a

multi-layer control structure, first using a Linear

Parameter Varying (LPV)-MPC for kinematic planning of

speed and yaw rate targets, then using an LPV-LQR

controller to obtain steering angle and acceleration from

the speed and yaw rate targets. Ugo and Borelli (2020)

built a MPC simultaneously controlling steering and

acceleration with the ability learn optimal racing

trajectories over a sequence of laps and was demonstrated

on a RC car platform. Liao-McPherson et al. (2020)

considers how to solve the constrained multi-variable

(steering and drive force demand) MPC optimization

problem in real time using a Fischer-Burmeister function

to transform complementarity conditions into nonlinear

equations.

None of these prior works consider the powertrain

dynamics, i.e., pedal to vehicle acceleration, which we

observed in vehicle testing to significantly degrade

tracking performance and even stability, particularly if the

Paper 2539 | page 2

test vehicle is a conventional gasoline vehicle. It may be

that for autonomous vehicles, tight speed tracking is not

as important as steering around obstacles. Additionally,

autonomous vehicles are commonly built on top of hybrid

or electric vehicle platform, thus, not as exposed to delays

in power generation. However, in other developments,

e.g., for emissions and fuel economy testing, tight tracking

of speed profiles is explicitly required. Pedal robots are

sometimes used for these tests. A strategy using a recorded

human drive for feed-forward combined with a PID could

be used to control the vehicle speed. A more sophisticated

strategy (Park et al., 2022) uses Reinforcement Learning

(RL) to find a policy for adjusting time varying PI gains.

However, to accommodate vehicle variations, e.g., drive

modes or entirely different vehicles, a P gain table as a

function of vehicle speed must be made first for each

vehicle variation.

We have seen in our experiments that the lag / delay

between the pedal and vehicle acceleration can be large,

e.g., up to 400msec. on conventional vehicle tests. This

greatly limits the performance of controllers if the model

has no ability to express that lag. Adding on top of this,

braking dynamics and acceleration dynamics are vastly

different. A model free approach, e.g., PID, would also be

sensitive to the lag, greatly limiting its performance.

Furthermore, unlike MPC, PID cannot take advantage of

knowing future speed targets, and, as a result, requires

high gains which are not feasible in the presence of

substantial lag. One may suggest a simple model of the

powertrain, e.g., a first order filter. However, our

experiments also indicate that this is not sufficient to

obtain good, closed loop performance.

Our final MPC design, described herein, takes a data

driven approach to modelling the vehicle. First, a neural

network model of the powertrain is made. Specifically, we

use a Long Short-Term Memory (LSTM) network (The

MathWorks, Inc., 2022), which can represent general

nonlinearities and has internal states capable of

representing lags. We then co-optimize for the steering

wheel angle and pedal and brake position as a function of

the GPS-IMU measurements and target path.

The remainder of this section is organized as follows.

Section 2 describes the vehicle model and model

validation. Section 3 describes the MPC optimization

problem to be solved at every sample time. Section 4

shows closed loop experiment results. Finally, Section 5

contains concluding remarks.

2. Vehicle Model

The vehicle model has the following physical states:

longitudinal acceleration, 𝑎, longitudinal velocity, 𝑣,

eastward position, 𝑥𝐸 , northward position, 𝑦𝐸 , yaw rate

(clockwise), 𝜔𝑧, and yaw, 𝜓. The controls are the

normalized pedal, 0 ≤ 𝑢𝑝 ≤ 1, brake, 0 ≤ 𝑢𝑏 ≤ 1, and

steering, −1 ≤ 𝑢𝑠 ≤ 1. The evolution of the acceleration

is modeled with a neural network, 𝑓𝑛𝑛,

 [

𝑎𝑘+1

𝑐𝑘+1

ℎ𝑘+1

] = 𝑓𝑛𝑛(𝑎𝑘, 𝑣𝑘 , 𝑢𝑝,𝑘 , 𝑢𝑏,𝑘 , 𝑐𝑘 , ℎ𝑘), (1)

where 𝑘 denotes a discrete time step (we utilize a 10Hz

sampling rate) and 𝑐 and ℎ denote cell and hidden state

vectors for the LSTM network respectively. The function,

𝑓𝑛𝑛, consists of an input saturation layer, LSTM layer, and

a fully connected output layer. The first layer 𝑙1 adds a

bias, 𝛽𝑖𝑛, and saturation to the brake and pedal inputs. This

is used to capture a dead band arising from a non-rigid

contact between the robot’s push rod and the pedals,

 𝑙1,𝑘 =

[

𝑎𝑘

𝑣𝑘

𝑚𝑎𝑥(𝑢𝑝,𝑘 + 𝛽𝑖𝑛,1, 0)

𝑚𝑎𝑥(𝑢𝑏,𝑘 + 𝛽𝑖𝑛,2, 0)]

. (2)

The second layer is the LSTM layer with weights 𝑊𝐿𝑆𝑇𝑀

and 𝑅𝐿𝑆𝑇𝑀 and bias 𝛽𝐿𝑆𝑇𝑀 where

 𝑊𝐿𝑆𝑇𝑀 =

[

𝑊𝑖

𝑊𝑓

𝑊𝑔

𝑊𝑜]

, 𝑅𝐿𝑆𝑇𝑀 =

[

𝑅𝑖

𝑅𝑓

𝑅𝑔

𝑅𝑜]

, 𝛽𝐿𝑆𝑇𝑀 =

[

𝛽𝑖

𝛽𝑓

𝛽𝑔

𝛽𝑜]

. (3)

Let 𝜎𝑐(𝑥) = tanh (𝑥) and 𝜎𝑔(𝑥) = (1 + 𝑒−𝑥)−1 denote

cell and gate activation functions and let .× denote an

element-wise multiplication. The cell and hidden state

update are computed from the following sequence of

equations.

𝑖𝑘 = 𝜎𝑔(𝑊𝑖𝑙1,𝑘 + 𝑅𝑖ℎ𝑘 + 𝛽𝑖),

𝑓𝑘 = 𝜎𝑔(𝑊𝑓𝑙1,𝑘 + 𝑅𝑓ℎ𝑘 + 𝛽𝑓),

𝑔𝑘 = 𝜎𝑐(𝑊𝑔𝑙1,𝑘 + 𝑅𝑔ℎ𝑘 + 𝛽𝑔),

𝑜𝑘 = 𝜎𝑔(𝑊𝑜𝑙1,𝑘 + 𝑅𝑜ℎ𝑘 + 𝛽𝑜),

𝑐𝑘+1 = 𝑓𝑘 .× 𝑐𝑘 + 𝑖𝑘 .× 𝑔𝑘 ,

ℎ𝑘+1 = 𝑜𝑘 .× 𝜎𝑐(𝑐𝑘+1).

 (4)

Finally, the acceleration at time 𝑘 + 1 is computed from

a fully connected layer with weights, 𝑊𝑓𝑐 , and bias 𝛽𝑓𝑐,

 𝑎𝑘+1 = 𝑊𝑓𝑐ℎ𝑘+1 + 𝛽𝑓𝑐 . (5)

Fitting of the weights 𝛽𝑖𝑛 ,𝑊𝐿𝑆𝑇𝑀, 𝑅𝐿𝑆𝑇𝑀, 𝛽𝐿𝑆𝑇𝑀 ,𝑊𝑓𝑐

and 𝛽𝑓𝑐 is executed with MathWork’s Deep Learning

Toolbox (The MathWorks, Inc., 2022).

The remaining state equations are simple and natural,

with a discretization step size, Δ𝑡 (100msec.),

𝑣𝑘+1 = 𝑣𝑘 + 𝛥𝑡𝑎𝑘 ,
𝑥𝐸,𝑘+1 = 𝑥𝐸,𝑘 + 𝛥𝑡 𝑐𝑜𝑠 𝜓𝑘 ,

𝑦𝐸,𝑘+1 = 𝑦𝐸,𝑘 + 𝛥𝑡 𝑠𝑖𝑛 𝜓𝑘 ,
𝜔𝑧,𝑘+1 = 𝛼1𝜔𝑧 + 𝛼2𝑣𝑘𝑢𝑠,𝑘 ,

𝜓𝑘+1 = 𝜓𝑘 + 𝛥𝑡𝜔𝑍,𝑘 ,

 (6)

where 𝛼1 and 𝛼2 are coefficients, fit with linear least

squares, giving the yaw rate response the ability to

represent first order dynamics from the steering input.

The model was trained on less than 10 min. of driving

data from a combination of human driving and an old

version of a MPC controller. The driving scenarios include

Paper 2539 | page 3

straight line drives, circular drives and weaving through a

series of cones. The maximum speed was 60kph due to

limited size of the testing site. The number of cell and

hidden states is eight each, i.e., 𝑐, ℎ ∈ ℝ8.
In addition to the neural network acceleration model,

model results from a first order acceleration model and a

static model will be shown for comparison. The first order

acceleration model, 𝑎𝑓𝑜, has the form

𝑎𝑓𝑜,𝑘+1 = 𝑐0 + 𝑐1𝑎𝑓𝑜,𝑘 + 𝑐2 𝑚𝑎𝑥(𝑢𝑝,𝑘 +

𝛽𝑖𝑛,1, 0) + 𝑐3 𝑚𝑎𝑥(𝑢𝑏,𝑘 + 𝛽𝑖𝑛,2, 0) + 𝑐4𝑣𝑘 + 𝑐5𝑣𝑘
2,

 (7)

where 𝑐0 through 𝑐5 are fitted coefficients. The static

model is the same as the first order model except with 𝑐1 =
0. Figure 1 shows a comparison of the models against data

from a straight-line drive scenario with a conventional

vehicle. As expected, the static model greatly leads the

acceleration response, e.g., see the time difference

between the acceleration peaks between 38 sec. and 45

sec. While the first order model can roughly match the

phase of the oscillations between 38 sec. and 45 sec., the

neural net model is able to match the peak-to-peak

amplitude better. The neural net model can also express a

different brake response, between 55 sec. and 60 sec.,

from the pedal response whereas the first order model

must use the same time constant for both pedal and brake.

Figure 2 shows the modeled yaw rate versus data where

the vehicle is weaving through a series of cones. As can

be seen, the simple yaw rate model is effective for

matching the test data and, as will be shown in later, is

sufficient for achieving low lateral path tracking error

when used by the MPC.

3. Model Predictive Controller Design

In the following, the optimization problem associated

with the MPC will be given and the solver strategy will be

discussed.

First, because the pedal and brake should not be pressed

at the same time, they can be combined into a single

actuator for the purposes of prediction and optimization.

Let the combined pedal and brake be denoted 𝑢𝑝𝑏 and let

𝑢𝑝 and 𝑢𝑏 in acceleration model, eq. (1), be replaced with

𝑢𝑝 = max(𝑢𝑝𝑏 , 0) and 𝑢𝑏 = max(−𝑢𝑝𝑏 , 0). Let 𝑢 be a

concatenation of controls, 𝑢 = [𝑢𝑝𝑏 𝑢𝑠]
𝑇
. For prediction,

𝛽𝑖𝑛 = 0 is utilized, i.e., removing the dead band in

prediction, knowing that integral action will take care of

static offsets and avoiding loss of local sensitivity to the

controls in the MPC computations. Let 𝑥𝑘 be a

concatenation of discrete time states,

 𝑥𝑘 = [𝑎𝑘 𝑣𝑘 𝑥𝐸,𝑘 𝑦𝐸,𝑘 𝜔𝑍,𝑘 𝜓𝑘 𝑐𝑘
𝑇 ℎ𝑘

𝑇 𝑢𝑘−1
𝑇]

𝑇
, (8)

where 𝑢𝑘−1 is the control applied at the previous time step

and will be used to facilitate evaluating the rate of change

of the control in the cost function to be minimized. The

equations (1) – (6) and (8) can be compactly written into

a system of nonlinear difference equations,

 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘). (9)

We will define the number of states and number of

controls as 𝑁𝑠 and 𝑁𝑐 respectively.

Fig. 1. Acceleration models versus measured data.

Fig. 2. Yaw rate model versus measured data.

The objective of the MPC is to track a sequence of

positions as a function of time (or sample), i.e., the test

Paper 2539 | page 4

plan is defined through functions 𝑥𝐸
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) and

𝑦𝐸
𝑡𝑎𝑟𝑔𝑒𝑡

(𝑡) which may be stored in a lookup table and

interpolated. The optimization problem to be solved at

each sample time is

𝑚𝑖𝑛
𝑢0,…,𝑢𝑁−1

∑(𝑥𝐸,𝑘 − 𝑥𝐸,𝑘
𝑡𝑎𝑟𝑔𝑒𝑡

)
2
+ (𝑦𝐸,𝑘 − 𝑦𝐸,𝑘

𝑡𝑎𝑟𝑔𝑒𝑡
)
2

𝑁−1

𝑘=0

+ (𝑢𝑘 − 𝑢𝑘−1)
𝑇𝑅(𝑢𝑘 − 𝑢𝑘−1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:
𝑥0 = 𝑥(𝑡),

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘),
−1 ≤ 𝑢𝑘 ≤ 1,

 𝑣𝑘 ≥ 0, (10)

where 𝑁 is the horizon length and 𝑥(𝑡) is the measured

state at sample time 𝑡 with cell and hidden states obtained

from evaluating equations (2) and (4) once per sample.

The targets, 𝑥𝐸,𝑘
𝑡𝑎𝑟𝑔𝑒𝑡

 and 𝑦𝐸,𝑘
𝑡𝑎𝑟𝑔𝑒𝑡

 are obtained from

sampling 𝑥𝐸
𝑡𝑎𝑟𝑔𝑒𝑡

(𝑡) and 𝑦𝐸
𝑡𝑎𝑟𝑔𝑒𝑡

(𝑡). The cost function in

(10) penalizes the control effort through the control rate of

change, 𝑢𝑘 − 𝑢𝑘−1, giving a smooth control action and

rider comfort and removes the need to compute a control

target.

An alternative to the cost function in (10) would be to

instead have terms to track speed and yaw targets (or x-y

velocity components instead of yaw) and penalize lateral

path offset and control effort. In our simulations and

experiments, we have observed that this alternate version

has difficulties at low speed, e.g., less than 10-15kph.

Also, compared to (10), this alternate version has more

tuning parameters, and requires additional integrators /

adaptors / estimators for speed tracking, which also need

to be tuned. In contrast, the MPC, (10), only has tuning on

the control effort and speed tracking is inherited because

position error is the integral of speed error, assuming the

speed targets and position targets are consistent, i.e.,

𝑣𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = [𝑥̇𝐸
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) 𝑦̇𝐸

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)]
𝑇
.

To assist the solving of the optimization problem (10)

in real time, the inequality constraints are converted to an

exterior penalty function

𝛾(𝑢𝑘, 𝑣𝑘) = 𝛾1||𝑚𝑎𝑥(𝑢𝑘 − 1,0)||
2

2
+

 𝛾1||𝑚𝑎𝑥(1 − 𝑢𝑘 , 0)||
2

2
+ 𝛾2||𝑣𝑘||

2

2
, (11)

where ||𝑥||
2

2
= 𝑥𝑇𝑥 and 𝛾1 and 𝛾2 are tuning variables

which can be set large relative to 𝑅, i.e., 𝛾1, 𝛾2 ≫ ||𝑅||. In

practice, values for 𝛾1 and 𝛾2 are easily selected in

simulations and does not need to be changed afterward.

For convenience, let the incremental cost, 𝑙, be defined

as

𝑙(𝑥𝑘 , 𝑢𝑘) = (𝑥𝐸,𝑘 − 𝑥𝐸,𝑘
𝑡𝑎𝑟𝑔𝑒𝑡

)
2
+ (𝑦𝐸,𝑘 − 𝑦𝐸,𝑘

𝑡𝑎𝑟𝑔𝑒𝑡
)
2

 +(𝑢𝑘 − 𝑢𝑘−1)
𝑇𝑅(𝑢𝑘 − 𝑢𝑘−1) + 𝛾(𝑢𝑘 , 𝑣𝑘). (12)

The exterior penalized optimized problem to be solved

in real time is

𝑚𝑖𝑛
𝑢0,…,𝑢𝑁−1

∑ 𝑙(𝑥𝑘 , 𝑢𝑘)

𝑁−1

𝑘=0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:
𝑥0 = 𝑥(𝑡),

 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘). (13)

From the optimization problem (13), necessary

conditions for optimality are obtained through applying

Karush-Kuhn-Tucker conditions and are as follows,

 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)

 ∀𝑘 ∈ {0,… ,𝑁 − 1 }, 𝑥0 = 𝑥(𝑡), (14)

 𝑝𝑘 = 𝑙𝑥(𝑥𝑘 , 𝑢𝑘) + 𝑓𝑥
𝑇(𝑥𝑘, 𝑢𝑘)𝑝𝑘+1

 ∀𝑘 ∈ {1,… ,𝑁 − 1}, 𝑝𝑁 = 0, (15)

 𝑙𝑢(𝑥𝑘, 𝑢𝑘) + 𝑓𝑢
𝑇(𝑥𝑘, 𝑢𝑘)𝑝𝑘+1 = 0

 ∀𝑘 ∈ {0,… ,𝑁 − 1 }, (16)

where 𝑙𝑥 , 𝑙𝑢 , 𝑓𝑥 and 𝑓𝑢 are 𝜕𝑙/𝜕𝑥, 𝜕𝑙/𝜕𝑢, 𝜕𝑓/𝜕𝑥 and

𝜕𝑓/𝜕𝑢 respectively. The co-states, 𝑝𝑘 ∈ ℝ𝑁𝑠, are the

Lagrange multipliers associated with state equation

equality constraints. Equation (15) is referred to as the co-

state equation and equation (16) is referred to as the

stationarity condition.

Let 𝑋 be the sequence of future states, 𝑋 =
[𝑥0

𝑇 , . . , 𝑥𝑁−1
𝑇]𝑇 ∈ ℝ(𝑁−1)𝑁𝑠 and 𝑃 be the sequence of co-

states, 𝑃 = [𝑝1
𝑇 , . . , 𝑝𝑁

𝑇]𝑇 ∈ ℝ(𝑁−1)𝑁𝑠 . The states, 𝑋, can be

computed as a function of 𝑈 and initial condition 𝑥(𝑡)

through propagation of the state equations, i.e., 𝑋 =
𝑋(𝑈, 𝑥(𝑡)). The co-states can be computed as a function

of 𝑈 and 𝑋 through back-propagation of the co-state

equations, i.e., 𝑃 = 𝑃(𝑋, 𝑈). We define the residual, 𝐹 ∈

ℝ(𝑁−1)𝑁𝑐, as the left-hand side of the stationarity

conditions,

 𝐹(𝑋, 𝑈, 𝑃) =

 [
𝑙𝑢(𝑥0, 𝑢0) + 𝑓𝑢

𝑇(𝑥0, 𝑢0)𝑝1

…
𝑙𝑢(𝑥𝑁−1, 𝑢𝑁−1) + 𝑓𝑢

𝑇(𝑥𝑁−1, 𝑢𝑁−1)𝑝𝑁

]. (17)

Note that 𝐹(𝑋, 𝑈, 𝑃) = 𝐹(𝑋(𝑈), 𝑈, 𝑃(𝑋(𝑈), 𝑈)) =

𝐹(𝑈). Newton’s method can now be used to find a

sequence of 𝑈’s such that 𝐹(𝑈) → 0, i.e., satisfying the

necessary conditions. Let 𝑈𝑖(𝑡) denote the 𝑖-th iteration of

𝑈 at sample time 𝑡. The Newton update is

 𝑈𝑖+1(𝑡) = 𝑈𝑖(𝑡) + 𝛿𝑈, (18)

where 𝛿𝑈 is the Newton step. Specifically, the Forward

Difference Conjugate Gradient (FDCG) algorithm

(Algorithm 2.5.1 in Kelley, 1999) is used calculate 𝛿𝑈

starting from an initial point 𝑈𝑖(𝑡) and residual 𝐹(𝑈𝑖(𝑡)).

The advantage of the FDCG algorithm is that it does not

require computing the Jacobian, 𝐽(𝑈𝑖(𝑡)), of the residual

around the point 𝑈𝑖(𝑡). Rather the Jacobian times vector

product in the standard Conjugate Gradient (CG)

algorithm (Algorithm 1.5.1 in Kelley, 1999) can be

approximated by a forward difference calculation,

Paper 2539 | page 5

 𝐽(𝑈𝑖(𝑡))𝜌 ≈
(𝐹(𝑈𝑖(𝑡)+𝜖𝜌)−𝐹(𝑈𝑖(𝑡)))

𝜖
. (19)

Finally, a Real Time Iteration (RTI) strategy (Diehl et

al. 2005) will be used, meaning that the optimization

problem (13) will not be solved to completion, but rather,

a fixed, finite number, 𝑁𝑁𝑒𝑤 , of Newton steps (18) will be

taken each sampling instant. The initial guess for the

sequence of controls at the next sampling instant is the

final iterate from the current sampling instant, i.e.,

𝑈0(𝑡 + Δ𝑡) = 𝑈𝑁𝑁𝑒𝑤(𝑡).

4. Experiment Results

The MPC used in experiments utilize a prediction

horizon of 4.5 sec. (𝑁 = 45 steps), the sampling rate is

10Hz and 10 Newton steps are taken every sample. Figure

3 shows experiments with MPC controlling a

conventional vehicle along a straight-line path. The target

positions versus time were obtained from a human drive.

Note that the red pedal-brake line is not used as a target

for the control and is only there to show how the human

drove the path. Both a MPC with the neural net powertrain

model and a MPC with a first order model are shown,

where the MPC with a first order model struggles to track

the speed target while the MPC with neural net can track

the target closely. Different tunings of the MPC with the

first order model were not able to achieve satisfying speed

tracking performance. A different configuration with a

velocity and lateral offset type cost function was

somewhat more successful but still did not perform as well

as the MPC with neural net model.

The MPC with neural net in Fig. 3 gains some speed at

the beginning of the experiment when the target is zero.

This is due to down-sampling of the target drive and target

interpolation and is not an issue of the MPC itself. At the

transition between acceleration and braking, the MPC

looks like it is a little slow to brake. This is due to the dead-

band as the pedal comes off and as the brake engages

which the MPC is currently configured to smoothly pass

through.

Figures 4 and 5 show the MPC (with neural net

powertrain model) controlling the conventional vehicle

along a cone weaving path and along a circular path

respectively. In these cases, the speed tracking is also

satisfactory and the path error, as defined as the distance

to the closest point on the target path, is less than 30 cm

after the initial condition response. Note that the MPC

softly stops to zero speed due to the 𝑣 ≥ 0 constraint. This

causes some overshoot of the final target position (and is

why the path error becomes large at the end of the path).

Finally, Fig. 6 shows the MPC driving an electric

vehicle along a cone weaving path (with the model refit to

electric vehicle data). As expected, the speed tracking and

path error is good. The main thing to note is that after

model refitting, no other parameters / tunings of the MPC

were changed from the conventional vehicle settings. This

shows the general applicability of the approach.

Fig. 3. Speed tracking performance on a conventional

vehicle comparison between MPC with neural network

model and MPC with a first order powertrain model on a

straight-line drive.

Fig. 4. Speed and path tracking performance on a

conventional vehicle with the MPC when weaving through

cones.

5. Conclusions

This paper describes a MPC for a driving robot to be

used for testing ADAS systems. Specifically, this MPC

utilizes a neural network, with LSTM layer, to model the

acceleration dynamics of the vehicle. Being able to easily

adapt to a wide variety of vehicles and powertrains is

necessary for the driving robot, a capability not clearly

seen in other robot driver or autonomous driving

developments. Despite the model being data driven, little

data is needed to fit the model, e.g., 10 min of driving data.

Furthermore, no tuning of the controller was required

Paper 2539 | page 6

when swapping between the conventional and electric

vehicles in our experiments.

In future work, we will be testing the controller in

additional scenarios and higher speeds, specifically

ensuring that Euro NCAP test requirements are met. We

will also be considering the coordination of the test vehicle

with other robot-controlled vehicles and objects.

Fig. 5. Speed and path tracking performance on a

conventional vehicle with the MPC when driving in a

circle.

Fig. 6. Speed and path tracking performance on a electric

vehicle with the MPC when weaving through cones.

6. References

Alcalá, E., Puig, V., Quevedo, J., 2019. LPV-MPC

Control for Autonomous Vehicles. IFAC PapersOnline.

Vol. 32, No. 28, pp. 106-113.

Diehl, M., Findeisen, R., Allgöwer, F., Bock, H. G.,

Schlöder, J. P., 2005. Nominal Stability of the Real-Time

Iteration Scheme for Nonlinear Model Predictive

Control. IEEE Proceedings-Control Theory and

Applications, Vol. 152, No. 3, pp. 296-308.

Euro NCAP, 2020. 2020 Assisted Driving Tests,

Retrieved from https://www.euroncap.com/en/vehicle-

safety/safety-campaigns/2020-assisted-driving-tests/,

July 13, 2022.

Kelley, C. T., 1999. Iterative Methods for Optimization.

Society for Industrial and Applied Mathematics,

Philadelphia.

Liao-McPherson, D., Huang, M., Zaseck, K., 2020.

Smoothed and regularized Fischer-Burmeister solver for

embedded real-time constrained optimal control

problems in autonomous systems. United States Patent,

No. US 10,739,768 B2.

The MathWorks, Inc. 2022. Deep Learning Toolbox.

Retrieved from

https://www.mathworks.com/products/deep-

learning.html, July 14, 2022.

Park, J., Kim, H., Hwang, K., Lim, S., 2022. Deep

reinforcement learning based dynamic proportional-

integral (PI) gain auto-tuning method for a robot driver

system. IEEE Access. Vol 10., pp. 31043-31057.

Sun, C., Zhang, X., Zhou, Q., Tian, Y., 2019. A model

predictive control with switched tracking error for

autonomous vehicle path tracking. IEEE Access. Vol. 7,

pp. 53103 – 53114.

Tang, L., Yan, Fuwu, Y., Zou, B., Wang, K., Chen L.,

2020. An improved kinematic model predictive control

for high-speed path tracking of autonomous vehicles.

IEEE Access. Vol 8., pp. 51400-51413.

Ugo, R., Borelli, F., 2020. Learning how to

autonomously race a car: a predictive control approach.

Direct control acceleration and steering angle. IEEE

Transactions on Control Systems Technology, Vol. 28,

No. 6, pp. 2713-2719.

Wang, H., Liu, B., Ping, X., An Q., 2019. Path tracking

control for autonomous vehicles based on an improved

MPC. IEEE Access. Vol. 7, pp. 161064-161073.

