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Abstract 

Advanced Driver Assist Systems (ADAS) are becoming 

more prevalent and more sophisticated in passenger 

vehicles, with features such as automatic lane keeping, 

pedestrian detection, and emergency breaking. In line with 

the increased production deployment of ADAS, testing of 

these systems are becoming more rigorous with more 

scenarios needing to be considered every year, see, for 

example, the ADAS testing conducted by Euro NCAP. To 

fit the need of placing test vehicles and environment 

factors in very specific and repeatable scenarios, physical 

driving robots are commonly used. While most current 

tests set up the test vehicle in near steady state conditions, 

e.g., constant speed and straight, in the future, more 

complex, possibly dynamic scenarios will need to be 

tested. This paper presents a Model Predictive Control 

(MPC) strategy for controlling a vehicle along dynamic 

paths and is easily deployable across different vehicles. 

Experiment results demonstrating the controller capability 

for both an electric and a conventional vehicle is 

presented. 

Keywords: Model Predictive Control, Optimal Control, 

Robot Driver, Advanced Driver Assist Systems. 

 

1. Introduction 

In the following, a Model Predictive Control (MPC) for 

a driving robot will be developed for the purpose of testing 

ADAS systems. The robot consists of motors and linkages 

for pressing the test vehicle’s pedal and brake and for 

steering and will drive the vehicle at specific speeds along 

specific paths, e.g., as defined by Euro NCAP test 

scenarios (Euro NCAP, 2020). Tight tracking of the test 

plan, as defined by target positions and speeds or target 

positions in time, is pertinent to successful and repeatable 

tests, particularly since the tests often involve 

coordinating multiple objects in addition to test vehicle, 

e.g., leading and following vehicles, cross traffic, and 

pedestrians. 

MPC is a control methodology which uses a plant model 

to predict states and outputs into the future as a function 

of a sequence of future controls and current state. This 

sequence of future controls is then optimized with respect 

to a cost function, e.g., predicted tracking error, and 

constraints. Then the first element of the sequence is 

applied to the plant. The next sampling instant, the 

optimization problem is updated with the new state 

measurements / estimates and new targets, the future 

control sequence is re-optimized, and the first element of 

the control sequence is again applied to plant. 

In the context of control of vehicle dynamics, most work 

tend to focus on lateral control and tire modelling. Rarely 

is lateral and longitudinal control considered together, 

possibly because tight speed tracking may be considered 

well handled by inner loop controllers. For example, Sun 

et al. (2019) and Wang et al. (2019) use bicycle and tire 

models for prediction but only optimize for a steering 

command while assuming speed is constant over the 

horizon. Tang et al. (2020) uses a bicycle and tire model 

for prediction and optimizes for a yaw rate target which is 

sent to a lower level PID controller for steering. In 

dynamic scenarios, e.g., accelerating while turning, these 

decoupled strategies will be suboptimal because yaw rate 

is fundamentally a nonlinear function of both the steering 

angle and vehicle speed. 

For multi-variable control, Alcalá et al. (2019) uses a 

multi-layer control structure, first using a Linear 

Parameter Varying (LPV)-MPC for kinematic planning of 

speed and yaw rate targets, then using an LPV-LQR 

controller to obtain steering angle and acceleration from 

the speed and yaw rate targets. Ugo and Borelli (2020) 

built a MPC simultaneously controlling steering and 

acceleration with the ability learn optimal racing 

trajectories over a sequence of laps and was demonstrated 

on a RC car platform. Liao-McPherson et al. (2020) 

considers how to solve the constrained multi-variable 

(steering and drive force demand) MPC optimization 

problem in real time using a Fischer-Burmeister function 

to transform complementarity conditions into nonlinear 

equations. 

None of these prior works consider the powertrain 

dynamics, i.e., pedal to vehicle acceleration, which we 

observed in vehicle testing to significantly degrade 

tracking performance and even stability, particularly if the 
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test vehicle is a conventional gasoline vehicle. It may be 

that for autonomous vehicles, tight speed tracking is not 

as important as steering around obstacles. Additionally, 

autonomous vehicles are commonly built on top of hybrid 

or electric vehicle platform, thus, not as exposed to delays 

in power generation. However, in other developments, 

e.g., for emissions and fuel economy testing, tight tracking 

of speed profiles is explicitly required. Pedal robots are 

sometimes used for these tests. A strategy using a recorded 

human drive for feed-forward combined with a PID could 

be used to control the vehicle speed. A more sophisticated 

strategy (Park et al., 2022) uses Reinforcement Learning 

(RL) to find a policy for adjusting time varying PI gains. 

However, to accommodate vehicle variations, e.g., drive 

modes or entirely different vehicles, a P gain table as a 

function of vehicle speed must be made first for each 

vehicle variation. 

We have seen in our experiments that the lag / delay 

between the pedal and vehicle acceleration can be large, 

e.g., up to 400msec. on conventional vehicle tests. This 

greatly limits the performance of controllers if the model 

has no ability to express that lag. Adding on top of this, 

braking dynamics and acceleration dynamics are vastly 

different. A model free approach, e.g., PID, would also be 

sensitive to the lag, greatly limiting its performance. 

Furthermore, unlike MPC, PID cannot take advantage of 

knowing future speed targets, and, as a result, requires 

high gains which are not feasible in the presence of 

substantial lag. One may suggest a simple model of the 

powertrain, e.g., a first order filter. However, our 

experiments also indicate that this is not sufficient to 

obtain good, closed loop performance. 

Our final MPC design, described herein, takes a data 

driven approach to modelling the vehicle. First, a neural 

network model of the powertrain is made. Specifically, we 

use a Long Short-Term Memory (LSTM) network (The 

MathWorks, Inc., 2022), which can represent general 

nonlinearities and has internal states capable of 

representing lags. We then co-optimize for the steering 

wheel angle and pedal and brake position as a function of 

the GPS-IMU measurements and target path. 

The remainder of this section is organized as follows. 

Section 2 describes the vehicle model and model 

validation. Section 3 describes the MPC optimization 

problem to be solved at every sample time. Section 4 

shows closed loop experiment results. Finally, Section 5 

contains concluding remarks. 

2. Vehicle Model 

The vehicle model has the following physical states: 

longitudinal acceleration, 𝑎, longitudinal velocity, 𝑣, 

eastward position, 𝑥𝐸 , northward position, 𝑦𝐸 , yaw rate 

(clockwise), 𝜔𝑧, and yaw, 𝜓. The controls are the 

normalized pedal, 0 ≤ 𝑢𝑝 ≤ 1, brake, 0 ≤ 𝑢𝑏 ≤ 1, and 

steering, −1 ≤ 𝑢𝑠 ≤ 1. The evolution of the acceleration 

is modeled with a neural network, 𝑓𝑛𝑛, 

           [

𝑎𝑘+1

𝑐𝑘+1

ℎ𝑘+1

] = 𝑓𝑛𝑛(𝑎𝑘, 𝑣𝑘 , 𝑢𝑝,𝑘 , 𝑢𝑏,𝑘 , 𝑐𝑘 , ℎ𝑘), (1) 

where 𝑘 denotes a discrete time step (we utilize a 10Hz 

sampling rate) and 𝑐 and ℎ denote cell and hidden state 

vectors for the LSTM network respectively. The function, 

𝑓𝑛𝑛, consists of an input saturation layer, LSTM layer, and 

a fully connected output layer. The first layer 𝑙1 adds a 

bias, 𝛽𝑖𝑛, and saturation to the brake and pedal inputs. This 

is used to capture a dead band arising from a non-rigid 

contact between the robot’s push rod and the pedals,  

                 𝑙1,𝑘 =

[
 
 
 

𝑎𝑘

𝑣𝑘

𝑚𝑎𝑥(𝑢𝑝,𝑘 + 𝛽𝑖𝑛,1, 0)

𝑚𝑎𝑥(𝑢𝑏,𝑘 + 𝛽𝑖𝑛,2, 0)]
 
 
 

. (2) 

The second layer is the LSTM layer with weights 𝑊𝐿𝑆𝑇𝑀 

and 𝑅𝐿𝑆𝑇𝑀 and bias 𝛽𝐿𝑆𝑇𝑀 where 

  𝑊𝐿𝑆𝑇𝑀 =

[
 
 
 
𝑊𝑖

𝑊𝑓

𝑊𝑔

𝑊𝑜]
 
 
 
, 𝑅𝐿𝑆𝑇𝑀 =

[
 
 
 
𝑅𝑖

𝑅𝑓

𝑅𝑔

𝑅𝑜]
 
 
 
, 𝛽𝐿𝑆𝑇𝑀 =

[
 
 
 
𝛽𝑖

𝛽𝑓

𝛽𝑔

𝛽𝑜]
 
 
 

. (3) 

Let 𝜎𝑐(𝑥) = tanh (𝑥) and 𝜎𝑔(𝑥) = (1 + 𝑒−𝑥)−1 denote 

cell and gate activation functions and let .× denote an 

element-wise multiplication. The cell and hidden state 

update are computed from the following sequence of 

equations. 

                 

𝑖𝑘 = 𝜎𝑔(𝑊𝑖𝑙1,𝑘 + 𝑅𝑖ℎ𝑘 + 𝛽𝑖),

𝑓𝑘 = 𝜎𝑔(𝑊𝑓𝑙1,𝑘 + 𝑅𝑓ℎ𝑘 + 𝛽𝑓),

𝑔𝑘 = 𝜎𝑐(𝑊𝑔𝑙1,𝑘 + 𝑅𝑔ℎ𝑘 + 𝛽𝑔),

𝑜𝑘 = 𝜎𝑔(𝑊𝑜𝑙1,𝑘 + 𝑅𝑜ℎ𝑘 + 𝛽𝑜),

𝑐𝑘+1 = 𝑓𝑘 .× 𝑐𝑘 + 𝑖𝑘 .× 𝑔𝑘 ,

ℎ𝑘+1 = 𝑜𝑘 .× 𝜎𝑐(𝑐𝑘+1).

 (4) 

Finally, the acceleration at time 𝑘 + 1 is computed from 

a fully connected layer with weights, 𝑊𝑓𝑐 , and bias 𝛽𝑓𝑐, 

                         𝑎𝑘+1 = 𝑊𝑓𝑐ℎ𝑘+1 + 𝛽𝑓𝑐 . (5) 

Fitting of the weights 𝛽𝑖𝑛 ,𝑊𝐿𝑆𝑇𝑀, 𝑅𝐿𝑆𝑇𝑀, 𝛽𝐿𝑆𝑇𝑀 ,𝑊𝑓𝑐 

and 𝛽𝑓𝑐 is executed with MathWork’s Deep Learning 

Toolbox (The MathWorks, Inc., 2022). 

The remaining state equations are simple and natural, 

with a discretization step size, Δ𝑡 (100msec.), 

                    

𝑣𝑘+1 = 𝑣𝑘 + 𝛥𝑡𝑎𝑘 ,
𝑥𝐸,𝑘+1 = 𝑥𝐸,𝑘 + 𝛥𝑡 𝑐𝑜𝑠 𝜓𝑘 ,

𝑦𝐸,𝑘+1 = 𝑦𝐸,𝑘 + 𝛥𝑡 𝑠𝑖𝑛 𝜓𝑘 ,
𝜔𝑧,𝑘+1 = 𝛼1𝜔𝑧 + 𝛼2𝑣𝑘𝑢𝑠,𝑘 ,

𝜓𝑘+1 = 𝜓𝑘 + 𝛥𝑡𝜔𝑍,𝑘 ,

 (6) 

where 𝛼1 and 𝛼2 are coefficients, fit with linear least 

squares, giving the yaw rate response the ability to 

represent first order dynamics from the steering input. 

The model was trained on less than 10 min. of driving 

data from a combination of human driving and an old 

version of a MPC controller. The driving scenarios include 
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straight line drives, circular drives and weaving through a 

series of cones. The maximum speed was 60kph due to 

limited size of the testing site. The number of cell and 

hidden states is eight each, i.e., 𝑐, ℎ ∈ ℝ8. 
In addition to the neural network acceleration model, 

model results from a first order acceleration model and a 

static model will be shown for comparison. The first order 

acceleration model, 𝑎𝑓𝑜, has the form 

𝑎𝑓𝑜,𝑘+1 = 𝑐0 + 𝑐1𝑎𝑓𝑜,𝑘 + 𝑐2 𝑚𝑎𝑥(𝑢𝑝,𝑘 +

𝛽𝑖𝑛,1, 0) + 𝑐3 𝑚𝑎𝑥(𝑢𝑏,𝑘 + 𝛽𝑖𝑛,2, 0) + 𝑐4𝑣𝑘 + 𝑐5𝑣𝑘
2,

 (7) 

where 𝑐0 through 𝑐5 are fitted coefficients. The static 

model is the same as the first order model except with 𝑐1 =
0. Figure 1 shows a comparison of the models against data 

from a straight-line drive scenario with a conventional 

vehicle. As expected, the static model greatly leads the 

acceleration response, e.g., see the time difference 

between the acceleration peaks between 38 sec. and 45 

sec. While the first order model can roughly match the 

phase of the oscillations between 38 sec. and 45 sec., the 

neural net model is able to match the peak-to-peak 

amplitude better. The neural net model can also express a 

different brake response, between 55 sec. and 60 sec., 

from the pedal response whereas the first order model 

must use the same time constant for both pedal and brake.  

Figure 2 shows the modeled yaw rate versus data where 

the vehicle is weaving through a series of cones. As can 

be seen, the simple yaw rate model is effective for 

matching the test data and, as will be shown in later, is 

sufficient for achieving low lateral path tracking error 

when used by the MPC.  

3. Model Predictive Controller Design 

In the following, the optimization problem associated 

with the MPC will be given and the solver strategy will be 

discussed. 

First, because the pedal and brake should not be pressed 

at the same time, they can be combined into a single 

actuator for the purposes of prediction and optimization. 

Let the combined pedal and brake be denoted 𝑢𝑝𝑏 and let 

𝑢𝑝 and 𝑢𝑏 in acceleration model, eq. (1), be replaced with 

𝑢𝑝 = max(𝑢𝑝𝑏 , 0) and 𝑢𝑏 = max(−𝑢𝑝𝑏 , 0). Let 𝑢 be a 

concatenation of controls, 𝑢 = [𝑢𝑝𝑏 𝑢𝑠]
𝑇
. For prediction, 

𝛽𝑖𝑛 = 0  is utilized, i.e., removing the dead band in 

prediction, knowing that integral action will take care of 

static offsets and avoiding loss of local sensitivity to the 

controls in the MPC computations. Let 𝑥𝑘 be a 

concatenation of discrete time states, 

     𝑥𝑘 = [𝑎𝑘  𝑣𝑘 𝑥𝐸,𝑘 𝑦𝐸,𝑘  𝜔𝑍,𝑘  𝜓𝑘 𝑐𝑘
𝑇 ℎ𝑘

𝑇 𝑢𝑘−1
𝑇 ]

𝑇
, (8) 

where 𝑢𝑘−1 is the control applied at the previous time step 

and will be used to facilitate evaluating the rate of change 

of the control in the cost function to be minimized. The 

equations (1) – (6) and (8) can be compactly written into 

a system of nonlinear difference equations, 

                               𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘). (9) 

We will define the number of states and number of 

controls as 𝑁𝑠 and 𝑁𝑐 respectively. 

 

Fig. 1. Acceleration models versus measured data. 

 

Fig. 2. Yaw rate model versus measured data. 

The objective of the MPC is to track a sequence of 

positions as a function of time (or sample), i.e., the test 
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plan is defined through functions 𝑥𝐸
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) and 

𝑦𝐸
𝑡𝑎𝑟𝑔𝑒𝑡

(𝑡) which may be stored in a lookup table and 

interpolated. The optimization problem to be solved at 

each sample time is 

 

𝑚𝑖𝑛
𝑢0,…,𝑢𝑁−1

∑(𝑥𝐸,𝑘 − 𝑥𝐸,𝑘
𝑡𝑎𝑟𝑔𝑒𝑡

)
2
+ (𝑦𝐸,𝑘 − 𝑦𝐸,𝑘

𝑡𝑎𝑟𝑔𝑒𝑡
)
2

𝑁−1

𝑘=0

+ (𝑢𝑘 − 𝑢𝑘−1)
𝑇𝑅(𝑢𝑘 − 𝑢𝑘−1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 
𝑥0 = 𝑥(𝑡), 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘), 
−1 ≤ 𝑢𝑘 ≤ 1, 

                                        𝑣𝑘 ≥ 0, (10) 

where 𝑁 is the horizon length and 𝑥(𝑡) is the measured 

state at sample time 𝑡 with cell and hidden states obtained 

from evaluating equations (2) and (4) once per sample. 

The targets, 𝑥𝐸,𝑘
𝑡𝑎𝑟𝑔𝑒𝑡

 and 𝑦𝐸,𝑘
𝑡𝑎𝑟𝑔𝑒𝑡

 are obtained from 

sampling 𝑥𝐸
𝑡𝑎𝑟𝑔𝑒𝑡

(𝑡) and 𝑦𝐸
𝑡𝑎𝑟𝑔𝑒𝑡

(𝑡). The cost function in 

(10) penalizes the control effort through the control rate of 

change, 𝑢𝑘 − 𝑢𝑘−1, giving a smooth control action and 

rider comfort and removes the need to compute a control 

target. 

An alternative to the cost function in (10) would be to 

instead have terms to track speed and yaw targets (or x-y 

velocity components instead of yaw) and penalize lateral 

path offset and control effort. In our simulations and 

experiments, we have observed that this alternate version 

has difficulties at low speed, e.g., less than 10-15kph. 

Also, compared to (10), this alternate version has more 

tuning parameters, and requires additional integrators / 

adaptors / estimators for speed tracking, which also need 

to be tuned. In contrast, the MPC, (10), only has tuning on 

the control effort and speed tracking is inherited because 

position error is the integral of speed error, assuming the 

speed targets and position targets are consistent, i.e., 

𝑣𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = [𝑥̇𝐸
𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)  𝑦̇𝐸

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)]
𝑇
. 

To assist the solving of the optimization problem (10) 

in real time, the inequality constraints are converted to an 

exterior penalty function 

𝛾(𝑢𝑘, 𝑣𝑘) = 𝛾1||𝑚𝑎𝑥(𝑢𝑘 − 1,0)||
2

2
+                           

                       𝛾1||𝑚𝑎𝑥(1 − 𝑢𝑘 , 0)||
2

2
+ 𝛾2||𝑣𝑘||

2

2
, (11) 

where ||𝑥||
2

2
= 𝑥𝑇𝑥 and 𝛾1 and 𝛾2 are tuning variables 

which can be set large relative to 𝑅, i.e., 𝛾1, 𝛾2 ≫ ||𝑅||. In 

practice, values for  𝛾1 and 𝛾2 are easily selected in 

simulations and does not need to be changed afterward. 

For convenience, let the incremental cost, 𝑙, be defined 

as  

𝑙(𝑥𝑘 , 𝑢𝑘) = (𝑥𝐸,𝑘 − 𝑥𝐸,𝑘
𝑡𝑎𝑟𝑔𝑒𝑡

)
2
+ (𝑦𝐸,𝑘 − 𝑦𝐸,𝑘

𝑡𝑎𝑟𝑔𝑒𝑡
)
2
 

       +(𝑢𝑘 − 𝑢𝑘−1)
𝑇𝑅(𝑢𝑘 − 𝑢𝑘−1) + 𝛾(𝑢𝑘 , 𝑣𝑘). (12) 

The exterior penalized optimized problem to be solved 

in real time is  

𝑚𝑖𝑛
𝑢0,…,𝑢𝑁−1

∑ 𝑙(𝑥𝑘 , 𝑢𝑘)

𝑁−1

𝑘=0

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 
𝑥0 = 𝑥(𝑡), 

                                  𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘). (13) 

From the optimization problem (13), necessary 

conditions for optimality are obtained through applying 

Karush-Kuhn-Tucker conditions and are as follows, 

                𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)  

                             ∀𝑘 ∈ {0,… ,𝑁 − 1 }, 𝑥0 = 𝑥(𝑡), (14) 

      𝑝𝑘 = 𝑙𝑥(𝑥𝑘 , 𝑢𝑘) + 𝑓𝑥
𝑇(𝑥𝑘, 𝑢𝑘)𝑝𝑘+1 

                             ∀𝑘 ∈ {1,… ,𝑁 − 1}, 𝑝𝑁 = 0, (15) 

    𝑙𝑢(𝑥𝑘, 𝑢𝑘) + 𝑓𝑢
𝑇(𝑥𝑘, 𝑢𝑘)𝑝𝑘+1 = 0 

                             ∀𝑘 ∈ {0,… ,𝑁 − 1 }, (16) 

where 𝑙𝑥 , 𝑙𝑢 , 𝑓𝑥 and 𝑓𝑢 are 𝜕𝑙/𝜕𝑥, 𝜕𝑙/𝜕𝑢, 𝜕𝑓/𝜕𝑥 and 

𝜕𝑓/𝜕𝑢 respectively. The co-states, 𝑝𝑘 ∈ ℝ𝑁𝑠, are the 

Lagrange multipliers associated with state equation 

equality constraints. Equation (15) is referred to as the co-

state equation and equation (16) is referred to as the 

stationarity condition. 

Let 𝑋 be the sequence of future states, 𝑋 =
[𝑥0

𝑇 , . . , 𝑥𝑁−1
𝑇 ]𝑇 ∈ ℝ(𝑁−1)𝑁𝑠  and 𝑃 be the sequence of co-

states, 𝑃 = [𝑝1
𝑇 , . . , 𝑝𝑁

𝑇]𝑇 ∈ ℝ(𝑁−1)𝑁𝑠 . The states, 𝑋, can be 

computed as a function of 𝑈 and initial condition 𝑥(𝑡) 

through propagation of the state equations, i.e., 𝑋 =
𝑋(𝑈, 𝑥(𝑡)). The co-states can be computed as a function 

of 𝑈 and 𝑋 through back-propagation of the co-state 

equations, i.e., 𝑃 = 𝑃(𝑋, 𝑈). We define the residual, 𝐹 ∈

ℝ(𝑁−1)𝑁𝑐, as the left-hand side of the stationarity 

conditions, 

          𝐹(𝑋, 𝑈, 𝑃) =

          [
𝑙𝑢(𝑥0, 𝑢0) + 𝑓𝑢

𝑇(𝑥0, 𝑢0)𝑝1

…
𝑙𝑢(𝑥𝑁−1, 𝑢𝑁−1) + 𝑓𝑢

𝑇(𝑥𝑁−1, 𝑢𝑁−1)𝑝𝑁

]. (17) 

Note that 𝐹(𝑋, 𝑈, 𝑃) = 𝐹(𝑋(𝑈), 𝑈, 𝑃(𝑋(𝑈), 𝑈)) =

𝐹(𝑈). Newton’s method can now be used to find a 

sequence of 𝑈’s such that 𝐹(𝑈) → 0, i.e., satisfying the 

necessary conditions. Let 𝑈𝑖(𝑡) denote the 𝑖-th iteration of 

𝑈 at sample time 𝑡. The Newton update is 

                             𝑈𝑖+1(𝑡) = 𝑈𝑖(𝑡) + 𝛿𝑈, (18) 

where 𝛿𝑈 is the Newton step. Specifically, the Forward 

Difference Conjugate Gradient (FDCG) algorithm 

(Algorithm 2.5.1 in Kelley, 1999) is used calculate 𝛿𝑈 

starting from an initial point 𝑈𝑖(𝑡) and residual 𝐹(𝑈𝑖(𝑡)). 

The advantage of the FDCG algorithm is that it does not 

require computing the Jacobian, 𝐽(𝑈𝑖(𝑡)), of the residual 

around the point 𝑈𝑖(𝑡). Rather the Jacobian times vector 

product in the standard Conjugate Gradient (CG) 

algorithm (Algorithm 1.5.1 in Kelley, 1999) can be 

approximated by a forward difference calculation, 
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               𝐽(𝑈𝑖(𝑡))𝜌 ≈
(𝐹(𝑈𝑖(𝑡)+𝜖𝜌)−𝐹(𝑈𝑖(𝑡)))

𝜖
. (19) 

Finally, a Real Time Iteration (RTI) strategy (Diehl et 

al. 2005) will be used, meaning that the optimization 

problem (13) will not be solved to completion, but rather, 

a fixed, finite number, 𝑁𝑁𝑒𝑤 , of Newton steps (18) will be 

taken each sampling instant. The initial guess for the 

sequence of controls at the next sampling instant is the 

final iterate from the current sampling instant, i.e., 

𝑈0(𝑡 + Δ𝑡) = 𝑈𝑁𝑁𝑒𝑤(𝑡). 

4. Experiment Results 

The MPC used in experiments utilize a prediction 

horizon of 4.5 sec. (𝑁 = 45 steps), the sampling rate is 

10Hz and 10 Newton steps are taken every sample. Figure 

3 shows experiments with MPC controlling a 

conventional vehicle along a straight-line path. The target 

positions versus time were obtained from a human drive. 

Note that the red pedal-brake line is not used as a target 

for the control and is only there to show how the human 

drove the path. Both a MPC with the neural net powertrain 

model and a MPC with a first order model are shown, 

where the MPC with a first order model struggles to track 

the speed target while the MPC with neural net can track 

the target closely. Different tunings of the MPC with the 

first order model were not able to achieve satisfying speed 

tracking performance. A different configuration with a 

velocity and lateral offset type cost function was 

somewhat more successful but still did not perform as well 

as the MPC with neural net model. 

The MPC with neural net in Fig. 3 gains some speed at 

the beginning of the experiment when the target is zero. 

This is due to down-sampling of the target drive and target 

interpolation and is not an issue of the MPC itself. At the 

transition between acceleration and braking, the MPC 

looks like it is a little slow to brake. This is due to the dead-

band as the pedal comes off and as the brake engages 

which the MPC is currently configured to smoothly pass 

through. 

Figures 4 and 5 show the MPC (with neural net 

powertrain model) controlling the conventional vehicle 

along a cone weaving path and along a circular path 

respectively. In these cases, the speed tracking is also 

satisfactory and the path error, as defined as the distance 

to the closest point on the target path, is less than 30 cm 

after the initial condition response. Note that the MPC 

softly stops to zero speed due to the 𝑣 ≥ 0 constraint. This 

causes some overshoot of the final target position (and is 

why the path error becomes large at the end of the path). 

Finally, Fig. 6 shows the MPC driving an electric 

vehicle along a cone weaving path (with the model refit to 

electric vehicle data). As expected, the speed tracking and 

path error is good. The main thing to note is that after 

model refitting, no other parameters / tunings of the MPC 

were changed from the conventional vehicle settings. This 

shows the general applicability of the approach. 

 

  

Fig. 3. Speed tracking performance on a conventional 

vehicle comparison between MPC with neural network 

model and MPC with a first order powertrain model on a 

straight-line drive. 

  

Fig. 4. Speed and path tracking performance on a 

conventional vehicle with the MPC when weaving through 

cones. 

5. Conclusions 

This paper describes a MPC for a driving robot to be 

used for testing ADAS systems. Specifically, this MPC 

utilizes a neural network, with LSTM layer, to model the 

acceleration dynamics of the vehicle. Being able to easily 

adapt to a wide variety of vehicles and powertrains is 

necessary for the driving robot, a capability not clearly 

seen in other robot driver or autonomous driving 

developments. Despite the model being data driven, little 

data is needed to fit the model, e.g., 10 min of driving data. 

Furthermore, no tuning of the controller was required 
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when swapping between the conventional and electric 

vehicles in our experiments. 

In future work, we will be testing the controller in 

additional scenarios and higher speeds, specifically 

ensuring that Euro NCAP test requirements are met. We 

will also be considering the coordination of the test vehicle 

with other robot-controlled vehicles and objects. 

  

Fig. 5. Speed and path tracking performance on a 

conventional vehicle with the MPC when driving in a 

circle. 

 

Fig. 6. Speed and path tracking performance on a electric 

vehicle with the MPC when weaving through cones. 
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